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Supplementary Exercises for Chapter 1

Exercise 1.1 We show in Chapter 4 that the graph
of an equation ax+by+cz =d is a plane in space
when not all of a, b, and ¢ are zero.

a. By examining the possible positions of planes
in space, show that three equations in three
variables can have zero, one, or infinitely many
solutions.

b. Can two equations in three variables have a
unique solution? Give reasons for your an-
swer.

b. No. If the corresponding planes are parallel
and distinct, there is no solution. Otherwise
they either coincide or have a whole common
line of solutions, that is, at least one parame-
ter.

Exercise 1.2 Find all solutions to the following
systems of linear equations.

a. X1+ x4+ x3— x4= 3
3x1 +5x —2x3+ x4= 1
—3x1 —Txo+Tx3—5x4= 17
X1+ 3xp —4x3 4+ 3x4=-5

b. xi+ 4x— x3+ x4=2
3x1+ 2x+ x3+2x4=35
x| — 6xp 4+ 3x3 =1
x1+ 14xy — S5x3+2x4 =3

X1 = 15 (=65 — 6t +16), xp = {5 (4s—1+1), x3 =
S, X4 =1

Exercise 1.3 In each case find (if possible) condi-
tions on a, b, and ¢ such that the system has zero,
one, or infinitely many solutions.

a) x+2y— 4z= 4 b) x+ y+3z=a
3x— y+13z= 2 ax+ y+5z=4
dx+ y+a*z=a+3 x+ay+dz=a

b. Ifa=1, no solution. Ifa=2,x=2-2t, y=—t,

z=t. If a# 1 and a # 2, the unique solution
‘v 85 _ 2 _ at2
Is X =321 Y = 3000 27 5

Exercise 1.4 Show that any two rows of
a matrix can be interchanged by elementary

row transformations of the other two types.
Ri]

Ry

R +R, R +R; Ry Ry
R R

Exercise 1.5 If ad # bc, show that [ i 2 } has

1 0
0 1|

Exercise 1.6 Find a, b, and ¢ so that the system

reduced row-echelon form [

x+ay+cz=0
bx+cy—3z=1
ax+2y+bz=5
has the solution x =3, y = -1, z = 2.
a=1,b=2,c=-1
Exercise 1.7 Solve the system
x+2y+27=-3
2x+ y+ z=-4
X— y+iz= i
where i = —1. [See Appendix ?7?.]
Exercise 1.8 Show that the real system
X+ y+ z=35
2x— y— z=1
—3x+2y+2z=0
has a complex solution: x =2, y=1i, z=3-—

i where # = —1. Explain. What happens
when such a real system has a unique solution?
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The (real) solution is x =2, y=3—1t, z=1 where t
is a parameter. The given complex solution occurs
when t =3 — i is complex. If the real system has
a unique solution, that solution is real because the
coefficients and constants are all real.

Exercise 1.9 A man is ordered by his doctor to
take 5 units of vitamin A, 13 units of vitamin B, and
23 units of vitamin C each day. Three brands of vi-
tamin pills are available, and the number of units of
each vitamin per pill are shown in the accompanying
table.

Vitamin

Brand | A | B | C
1 11214

2 1|13

3 0111

a. Find all combinations of pills that provide ex-
actly the required amount of vitamins (no par-
tial pills allowed).

b. If brands 1, 2, and 3 cost 3¢, 2¢, and 5¢
per pill, respectively, find the least expensive
treatment.

b. 5 of brand 1, 0 of brand 2, 3 of brand 3

Exercise 1.10 A restaurant owner plans to use
x tables seating 4, y tables seating 6, and z tables
seating 8, for a total of 20 tables. When fully occu-
pied, the tables seat 108 customers. If only half of
the x tables, half of the y tables, and one-fourth of

the z tables are used, each fully occupied, then 46
customers will be seated. Find x, y, and z.

Exercise 1.11
a. Show that a matrix with two rows and two

columns that is in reduced row-echelon form
must have one of the following forms:

oo ollo o]l o]

[Hint: The leading 1 in the first row must be
in column 1 or 2 or not exist.]

0 1
00

00
00

b. List the seven reduced row-echelon forms for
matrices with two rows and three columns.

c. List the four reduced row-echelon forms for
matrices with three rows and two columns.

Exercise 1.12 An amusement park charges $7 for
adults, $2 for youths, and $0.50 for children. If 150
people enter and pay a total of $100, find the num-
bers of adults, youths, and children. [Hint: These
numbers are nonnegative integers.]

Exercise 1.13 Solve the following system of equa-
tions for x and y.

P+ oxy— y=1
2% — xy+3y*?=13
0

x4 3xy+2y* =

[Hint: These equations are linear in the new vari-
ables x; = x%, x, = xy, and x3 = y*.]
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