yry with Open Texts

LINEAR ALGEBRA with Applications

Open Edition

Adapted for

Emory University

Math 221

Linear Algebra

Sections 1 & 2

Lectured and adapted by

Le Chen

April 15, 2021

le.chen@emory.edu

Course page

http://math.emory.edu/~lchen41/teaching/2021 Spring Math221

by W. Keith Nicholson Creative Commons License (CC BY-NC-SA)

Contents

1	\mathbf{Sys}	tems of Linear Equations	5
	1.1	Solutions and Elementary Operations	6
	1.2	Gaussian Elimination	16
	1.3	Homogeneous Equations	28
	Sup	plementary Exercises for Chapter 1	37
2	Ma	trix Algebra	39
	2.1	Matrix Addition, Scalar Multiplication, and Transposition	40
	2.2	Matrix-Vector Multiplication	53
	2.3	Matrix Multiplication	72
	2.4	Matrix Inverses	91
	2.5	Elementary Matrices	109
	2.6	Linear Transformations	119
	2.7	LU-Factorization	135
3	Det	terminants and Diagonalization	147
	3.1	The Cofactor Expansion	148
	3.2	Determinants and Matrix Inverses	163
	3.3	Diagonalization and Eigenvalues	178
	Sup	plementary Exercises for Chapter 3	201
4	Vec	etor Geometry	20 3
	4.1	Vectors and Lines	204
	4.2	Projections and Planes	223
	4.3	More on the Cross Product	244
	4.4	Linear Operators on \mathbb{R}^3	251
	Sup	plementary Exercises for Chapter 4	260
5	Vec	etor Space \mathbb{R}^n	26 3
	5.1	Subspaces and Spanning	264
	5.2	Independence and Dimension	273
	5.3	Orthogonality	287
	5 4	Rank of a Matrix	297

4 ■ CONTENTS

	5.5	Similarity and Diagonalization	307
	Supp	plementary Exercises for Chapter 5	320
6	Vec	tor Spaces	321
	6.1	Examples and Basic Properties	322
	6.2	Subspaces and Spanning Sets	333
	6.3	Linear Independence and Dimension	342
	6.4	Finite Dimensional Spaces	354
	Supp	plementary Exercises for Chapter 6	364
7	Line	ear Transformations	365
	7.1	Examples and Elementary Properties	366
	7.2	Kernel and Image of a Linear Transformation	374
	7.3	Isomorphisms and Composition	385
8	Ort	hogonality	399
	8.1	Orthogonal Complements and Projections	400
	8.2	Orthogonal Diagonalization	410
8	8.3	Positive Definite Matrices	421
	8.4	QR-Factorization	427
	8.5	Computing Eigenvalues	431
	8.6	The Singular Value Decomposition	436
		8.6.1 Singular Value Decompositions	436
		8.6.2 Fundamental Subspaces	442
		8.6.3 The Polar Decomposition of a Real Square Matrix	445
		8.6.4 The Pseudoinverse of a Matrix	447

Supplementary Exercises for Chapter 1

Exercise 1.1 We show in Chapter 4 that the graph of an equation ax + by + cz = d is a plane in space when not all of a, b, and c are zero.

- a. By examining the possible positions of planes in space, show that three equations in three variables can have zero, one, or infinitely many solutions.
- b. Can two equations in three variables have a unique solution? Give reasons for your answer.
- b. No. If the corresponding planes are parallel and distinct, there is no solution. Otherwise they either coincide or have a whole common line of solutions, that is, at least one parameter.

Exercise 1.2 Find all solutions to the following systems of linear equations.

a.
$$x_1 + x_2 + x_3 - x_4 = 3$$

 $3x_1 + 5x_2 - 2x_3 + x_4 = 1$
 $-3x_1 - 7x_2 + 7x_3 - 5x_4 = 7$
 $x_1 + 3x_2 - 4x_3 + 3x_4 = -5$

b.
$$x_1 + 4x_2 - x_3 + x_4 = 2$$

 $3x_1 + 2x_2 + x_3 + 2x_4 = 5$
 $x_1 - 6x_2 + 3x_3 = 1$
 $x_1 + 14x_2 - 5x_3 + 2x_4 = 3$

b. where
$$t^2 = -1$$
. [See Appendix ??.] $x_1 = \frac{1}{10}(-6s - 6t + 16), x_2 = \frac{1}{10}(4s - t + 1), x_3 =$ **Exercise 1.8** Show that the *real* system $s, x_4 = t$

Exercise 1.3 In each case find (if possible) conditions on a, b, and c such that the system has zero, one, or infinitely many solutions.

a)
$$x+2y-4z = 4$$
 b) $x + y + 3z = a$
 $3x - y + 13z = 2$ $ax + y + 5z = 4$
 $4x + y + a^2z = a + 3$ $x + ay + 4z = a$

b. If a = 1, no solution. If a = 2, x = 2 - 2t, y = -t, z=t. If $a \neq 1$ and $a \neq 2$, the unique solution is $x=\frac{8-5a}{3(a-1)}$, $y=\frac{-2-a}{3(a-1)}$, $z=\frac{a+2}{3}$

Exercise 1.4 Show that any two rows of a matrix can be interchanged by elementary row transformations of the other two types.

$$\begin{bmatrix} R_1 \\ R_2 \end{bmatrix} \rightarrow \begin{bmatrix} R_1 + R_2 \\ R_2 \end{bmatrix} \rightarrow \begin{bmatrix} R_1 + R_2 \\ -R_1 \end{bmatrix} \rightarrow \begin{bmatrix} R_2 \\ R_1 \end{bmatrix}$$

Exercise 1.5 If $ad \neq bc$, show that $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ has reduced row-echelon form $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

Exercise 1.6 Find a, b, and c so that the system

$$x + ay + cz = 0$$
$$bx + cy - 3z = 1$$
$$ax + 2y + bz = 5$$

has the solution x = 3, y = -1, z = 2. a = 1, b = 2, c = -1

Exercise 1.7 Solve the system

$$x+2y+2z=-3$$

$$2x + y + z=-4$$

$$x - y + iz = i$$

where $i^2 = -1$. [See Appendix ??.]

$$\begin{cases} x + y + z = 5 \\ 2x - y - z = 1 \\ -3x + 2y + 2z = 0 \end{cases}$$

has a *complex* solution: x = 2, y = i, z = 3i where $i^2 = -1$. Explain. What happens when such a real system has a unique solution?

The (real) solution is x = 2, y = 3 - t, z = t where t is a parameter. The given complex solution occurs when t = 3 - i is complex. If the real system has a unique solution, that solution is real because the coefficients and constants are all real.

Exercise 1.9 A man is ordered by his doctor to take 5 units of vitamin A, 13 units of vitamin B, and 23 units of vitamin C each day. Three brands of vitamin pills are available, and the number of units of each vitamin per pill are shown in the accompanying table.

	Vitamin		
Brand	Α	В	\mathbf{C}
1	1	2	4
2	1	1	3
3	0	1	1

- a. Find all combinations of pills that provide exactly the required amount of vitamins (no partial pills allowed).
- b. If brands 1, 2, and 3 cost 3¢, 2¢, and 5¢ per pill, respectively, find the least expensive treatment.
- b. 5 of brand 1, 0 of brand 2, 3 of brand 3

Exercise 1.10 A restaurant owner plans to use x tables seating 4, y tables seating 6, and z tables seating 8, for a total of 20 tables. When fully occupied, the tables seat 108 customers. If only half of the x tables, half of the y tables, and one-fourth of

the z tables are used, each fully occupied, then 46 customers will be seated. Find x, y, and z.

Exercise 1.11

a. Show that a matrix with two rows and two columns that is in reduced row-echelon form must have one of the following forms:

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right] \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right] \left[\begin{array}{cc} 1 & * \\ 0 & 0 \end{array}\right]$$

[*Hint*: The leading 1 in the first row must be in column 1 or 2 or not exist.]

- b. List the seven reduced row-echelon forms for matrices with two rows and three columns.
- c. List the four reduced row-echelon forms for matrices with three rows and two columns.

Exercise 1.12 An amusement park charges \$7 for adults, \$2 for youths, and \$0.50 for children. If 150 people enter and pay a total of \$100, find the numbers of adults, youths, and children. [*Hint*: These numbers are nonnegative *integers*.]

Exercise 1.13 Solve the following system of equations for x and y.

$$x^{2} + xy - y^{2} = 1$$

$$2x^{2} - xy + 3y^{2} = 13$$

$$x^{2} + 3xy + 2y^{2} = 0$$

[*Hint*: These equations are linear in the new variables $x_1 = x^2$, $x_2 = xy$, and $x_3 = y^2$.]